www.ijirtm.com

A Review of Duty-Cycling for Flooding in Wireless Sensor network to Improve Energy Optimization

Mr. Chandan Kumar Assistant professor Dept of CSE, Truba Group, Bhopal (M.P.) mckv.chandan@gmail.com

ABSTRACT

Numerous mechanisms are employed to optimize energy consumption, such as optimizing the sensing coverage and the network topology, controlling the transmission power, and notably duty-cycling. Given that the most amount of energy is supposed to be devoted to communication, duty-cycling the radio is the most relevant technique to achieve power efficiency. In this paper we review the energy consumption, delay aware optimization techniques in synchronous duty cycled wireless sensor network.

Keywords:- Wireless Sensor network (WSN), Clustering, Duty-Cycling, Quality of Services (QOS), Medium Access Control (MAC), Energy-Efficient.

INTRODUCTION

Wireless Sensor Networks (WSNs), a type of physical monitoring system, consist of a self-organized and linked sensors widely dispersed in a coverage area. The collection, communication, and treatment of sensed information among various sensors is achieved through specific communication protocols, and the data is transmitted via multi-hop routing to the sink. A common characteristic of many WSN application scenarios is that sensor nodes are deployed to just monitor the environment and relay (preprocessed) data to a sink node for further processing. In particular, when sensor nodes detect a significant effect, they are not expected to respond themselves. The prime reason being that often some physical action is required like sounding an alarm, adjusting some valves, or stopping an intruder, which would drain the batteries and increase the form factor significantly.

The rest of this paper is organized as follows in section II we discuss about the rich literature survey for the existing Wireless Sensor Network techniques to improve energy and Quality of Services and improve the performance in terms of delay and other techniques used in wireless sensor networks, here we also describe the about comparative study in a table no. 1. And finally in section III we define the overall summary with conclusion of this study and review paper.

II COMPARATIVE STUDY ANALYSIS

Sr. No.	Ref No.	Author Name	Publicati on	Year	Title	Objective of paper
1.	[1]	Shaobo Wu, Jianwei Niu, Wusheng Chou, Mohsen	IEEE TRANSAC TIONS	2016	Delay-AwareEnergyOptimizationfloodinginDuty-Cycled	This paper proposes a delay-aware energy- optimized flooding algorithm (DEF) tailored for synchronous duty-cycled WSNs, which can act as an enhanced scheme for most flooding trees.

www.ijirtm.com

editor@ijirtm.com

		Guizani			Wireless Sensor Networks	
2.	[4]	KOEN LANGENDO EN	Book Chapter, Delft University of Technolog y	2007	Medium Access Control In Wireless Sensor Networks	This chapter provides a broad overview of the MAC protocols especially developed for sensor networks. These MAC protocols differ from typical WLAN access protocols in that they trade off performance (latency and throughput) for a reduction in energy consumption to maximize the lifetime of the network.
3.	[7]	Yanchao Zhau, Wei Liu, Wenjing Lou, Yuguang Fang	IEEE	2006	Location-Based Compromise- Tolerant Security Mechanisms for Wireless Sensor Networks	propose the notion of location-based keys (LBKs) by binding private keys of individual nodes to both their IDs and geographic locations. They then develop an LBK-based neighborhood authentication scheme to localize the impact of compromised nodes to their vicinity.
4.	[6]	Nessrine Chakchouk	IEEE COMMUN ICATION SURVEYS & TUTORIA LS	2015	A Survey on Opportunistic Routing in Wireless Communication Networks	They provide a comprehensive survey of the existing literature related to opportunistic routing. They first study the main design building blocks of opportunistic routing. Then, they provide a taxonomy for opportunistic routing proposals, based on their routing objectives.
5.	[2]	Guodong Sun, Bin Xu	WASA	2010	Dynamic Routing Algorithm for Priority Guarantee in Low Duty- Cycled Wireless Sensor Networks	In this paper, they propose a Dynamic Routing Algorithm for priority Guarantee(called DRAG) in low duty-cycled sensor networks. Both schemes of dynamic forwarding decision making and priority-based schedule are used in DRAG to achieve priority guarantee in low duty-cycled sensor networks.
6.	[5]	Journal of Network and Computer Applications	IEEE	2016	Routing in wireless multimedia sensor networks: A survey and challenges ahead	This paper begins with the challenges and requirements in the design of WMSN routing, followed by an exhaustive survey on routing from the perspective of application requirements and key techniques. The existing routing solutions are classified into below major categories based on their design and optimization objectives, i.e., QoS provisioning, multimedia awareness, energy efficiency etc.
		Jinfang Jiang , Guangjie Han, Hui Guo, Lei Shu,	Journal of Network and Computer	2015	Geographic multipath routing based on geospatial	They propose two novel multi-path strategies called Greedy Geographic Forwarding based on Geospatial Division (GGFGD) and Geographic Forwarding based on Geospatial

www.ijirtm.com

editor@ijirtm.com

	1					7
7.	[10]	Joel J.P.C	Application		division in duty-	Division (GFGD). The proposed two
		Rodrigues	s, Elsevier		cycled	algorithms mainly consist of two phases,
			ltd.		underwater	choosing the next target small cube, and
					wireless sensor	choosing the next hop node in the target small
					networks	cube.
		Messaoud	IEEE	2013	Survey on	This paper reviews current asynchronous WSN
8.		Doudou,			Latency Issues of	MAC protocols. Its main contribution is to
		Djamel			Asynchronous	study these protocols from the delay efficiency
	[0]	Djenouri, and			MAC Protocols	perspective, and to investigate on their latency.
	[3]	Nadjib			in Delay-	The asynchronous protocols are divided into
		Badache			Sensitive	different categories: static wake-up preamble,
					Wireless Sensor	adaptive wake-up preamble, collaborative
					Networks	schedule setting, collisions resolution etc.
						8,
		Oswald	John Wiley	2012	Energy-efficient	In the paper they presented in detail an online
		Jumira ,	& Sons,		beaconless	geographic routing scheme called EBGRES,
		Riaan	Ltd.,		geographic	which can provide fully stateless, energy-
	54.43	Wolhuter,			routing in energy	efficient source-to-sink, and scalable routing
9.	[11]	Sherali			harvested	approach that has communication overheads
		Zeadally			wireless sensor	without the need to maintain neighborhood
		,			networks	information with perpetual energy supply.
		Dan Chen,	Springer	2013	Natural Disaster	In this study, they emphasized improving
10.		Zhixin Liu,			Monitoring with	utility of net-work and minimizing the energy
		Lizhe Wang,			Wireless Sensor	consumption as far as the harsh environment
	503	Minggang			Networks: A	the system designed for is concerned. A
	[9]	Dou, Jingying			Case Study of	distributed algorithm for joint optimal control
		Chen, Hui Li			Data-intensive	of power and rate has been developed. In
		,			Applications	wireless sensor networks, network throughput
					upon Low-Cost	and energy consumption are two important and
					Scalable Systems	contradictive specifications in protocol design.
					Section Systems	conductor of specifications in protocol design.
L		1	1		1	

Table 1: Shows the comparative study of Duty-Cycling in Wireless Sensor network Techniques to improve energy efficiency and Quality of Services issues and Challanges.

III CONCLUSION

Recent years have witnessed a huge interest in monitoring and management of natural disasters using the wireless sensor network technology from researchers and government agencies, In this study presents the survey of various research papers on wireless sensor network field for duty-cycling to improve the performance of system relates to power consumption, energy efficiency, minimum delay and improve the throughput.

REFERENCES:-

[1] Shaobo Wu, Jianwei Niu, Wusheng Chou, Mohsen Guizani "Delay-Aware Energy Optimization for Flooding in Duty-Cycled Wireless Sensor Networks"

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, Vol-15, 2016. Pp 8449-8462.

[2] Guodong Sun, Bin Xu "Dynamic Routing Algorithm for Priority Guarantee in Low Duty-Cycled Wireless Sensor Networks" WASA 2010, Pp 146–156.

[3] Messaoud Doudou, Djamel Djenouri, and Nadjib Badache "Survey on Latency Issues of Asynchronous MAC Protocols in Delay-Sensitive Wireless Sensor Networks" IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15. 2013. Pp 582-551.

[4] KOEN LANGENDOEN "MEDIUM ACCESS CONTROL IN WIRELESS SENSOR NETWORKS" Delft University of Technology, 2007.

[5] Hang Shen, Guangwei Bai "Routing in wireless multimedia sensor networks: A survey and challenges ahead" Journal of Network and Computer Applications, 2016. Pp 30-49.

[6] Nessrine Chakchouk "A Survey on Opportunistic Routing in Wireless Communication Networks" IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. 17, 2015. Pp 2214-2251.

[7] Yanchao Zhau, Wei Liu, Wenjing Lou, Yuguang Fang "Location-Based Compromise-Tolerant Security Mechanisms for Wireless Sensor Networks" IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, 2006. Pp 1-14.

[8] Jennifer Yick, Biswanath Mukherjee, Dipak Ghosal "Wireless sensor network survey" Computer Networks 52 2008. Pp 2292–2330.

[9] Dan Chen, Zhixin Liu, Lizhe Wang, Minggang Dou, Jingying Chen, Hui Li "Natural Disaster Monitoring with Wireless Sensor Networks: A Case Study of Data-intensive Applications upon Low-Cost Scalable Systems" Springer 2013. Pp 1-14.

[10] Jinfang Jiang , Guangjie Han, Hui Guo, Lei Shu, Joel J.P.C Rodrigues "Geographic multipath routing based on geospatial division in duty-cycled underwater wireless sensor networks" Journal of Network and Computer Applications, 2015. Pp 1-15.

[11] Oswald Jumira , Riaan Wolhuter, Sherali Zeadally "Energy-efficient beaconless geographic routing in energy harvested wireless sensor networks" John Wiley & Sons, Ltd., 2012. Pp 1-27.

[12] Xuan Hung Le, Sungyoung Lee, Ismail Butun, Murad Khalid, Ravi Sankar, Miso (Hyoung-IL) Kim, Manhyung Han, Young-Koo Lee, and Heejo Lee "An Energy-Efficient Access Control Scheme for Wireless Sensor Networks based on Elliptic Curve Cryptography" JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, 2009. Pp 599-607.