
ISSN: 2581-3404 (Online)
International Journal of Innovative Research in Technology and Management, Vol-4, Issue-6, 2020.

A Mechanism to Secure Server/Client Side Applications
against XSS Attack: A Review

1Divya Katare, Prof. Vinod Azad2
1Research Scholar, 2Assistant Professor

1,2Department of Computer Science,
1,2Institute of Engineering, SAGE University, Indore, (M.P.), India.

ABSTRACT
Cross-site scripting (XSS) is a scripting attack on
web pages and accounted as one of the most
dangerous vulnerability found in web applications.
Security researchers investigated several issues
and found XSS vulnerability in most of the
popular websites. Once the vulnerability is
exploited, an attacker gains a voluntary access of
the legitimate user’s web-browser and may
perform cookie-stealing, malware-spreading,
session-hijacking, and malicious redirection. As a
preventive measure against such attacks, it is
imperative to adopt security measures that
inevitably block the third party interference. The
most recent attack on existing websites is DOM
based Cross Site Scripting attack, it is much harder
to detect and therefore it must be prevented. This
attack can harm millions of people in a few
seconds. Vulnerabilities of websites are mostly
exploited through HTTP GET submission method
and HTTP POST submission method. To prevent
the existing websites from the XSS attacks, a
methodology of two way detector & filter is
developed.

Keywords- Static Taint analysis, symbolic
execution, DOM based XSS Cross-Site Scripting
(XSS), SQL Injection.

Introduction
According to security experts, cross-site scripting
is amongst the most serious and common threats in
Web applications today, surpassing buffer
overflow, it has become the number one
vulnerability for the past decade.

XSS is the result of a weakness inherent in many
Web applications security mechanism, absence or
insufficient sanitization of user inputs. XSS flaws
exist in Web applications written in various
programming languages such as PHP, Java, and
.NET where web pages processes unrestricted user
inputs. Attackers inject malicious code via these
inputs, thereby causing unintended script
executions by client’s browsers. Researchers have
proposed multiple XSS solutions ranging from
simple static analysis to complex runtime
protection mechanisms. However, vulnerabilities
continue to exist in many Web applications due to
developer’s lack of understanding of the problem
and their unfamiliarity with current defences,
strengths and limitations.

A. XSS Exploits
XSS exploits are similar to SQL injection, an
original form of code injection. This type of attack
exploits an application’s output function that
references poorly sanitized user input. However,
SQL injection targets the query function that
interacts with the database, whereas XSS exploits
target the HTML output function that sends data to
the browser. The basic idea of XSS injection is to
use special characters to cause Web browser
interpreters to switch from a data context to a code
context. For example, when an HTML page
references a user input as data, an attacker might
include the tag <script>, which can invoke the
Java- Script interpreter. If the application does not
filter such special characters, XSS injection is
successful, and the attacker can perform exploits

www.ijirtm.com 52

http://www.ijirtm.com/

ISSN: 2581-3404 (Online)
International Journal of Innovative Research in Technology and Management, Vol-4, Issue-6, 2020.

such as account hijacking, cookie poisoning,
denial of service (DoS), and Web content
manipulation. Typical input sources that attackers
manipulate include HTML forms, cookies, URLs,
and external files. Attackers often favor JavaScript
and also other kinds of client-side accessed user
input in the outgoing web- page. This type of XSS
exploit is common in error messages and search
results.

The XSS project recently reported multiple
reflected XSS holes in McAfee that attackers
could exploit to trick users into downloading
viruses. Stored or persistent XSS holes exist when
a server program stores user input containing
injected code in a persistent data store such as a
database and then references it in a webpage.
Attack against social networking sites commonly
exploits this type of XSS flaw. An example is the
Samy worm, which, within less than 24 hours after
its release on 4 October 2005, caused an
exponential growth of friend lists for 1 million
Myspace users, effectively creating a DoS attack.
Both reflected and stored XSS holes result from
improper handling of user inputs in server-side
scripts. In contrast, DOM-based XSS holes appear
in the Web application when client-side scripts
reference user inputs, dynamically obtained from
the Document Object Model structure, without
proper validation.

B. Example XSS Exploits
For a Web application that lets travelers share tips
about the places they have visited. The program
contains four input fields Action, Place, Tip, and
User that attacker can manipulate. An attacker
could send a seemingly innocuous URL link to a
victim via e-mail or a social networking site. The
script in bold will execute on the victim’s browser
if the victim follows the link to traveling Forum.

C. XSS Defenses
XSS defenses can be broadly classified into four
types: defensive coding practices, XSS testing,
vulnerability detection.

1) Defensive Coding
Because XSS arises from the improper handling of
inputs, using defensive coding practices that
validate and sanitize inputs is the best way to
eliminate XSS input validation as it ensures that
user inputs conform to a required input format.
There are four basic input sanitization options.
Replacement and removal methods search for
known bad characters (blacklist comparison); the
former replaces them with non-malicious
characters, whereas the latter simply removes
them. Escaping methods search for characters that
have special meanings for client-side interpreters
and remove those meanings. Restriction
techniques limit inputs to known good inputs
(white list comparison). Checking blacklisted
characters in the inputs is more scalable, but
blacklist comparisons often fail as it is difficult to
anticipate every attack signature variant. White list
comparisons are considered more secure, but they
can result in the rejection of many unlisted valid
inputs. OWASP has issued rules that define proper
escaping schemes for inputs referenced in different
HTML output.

2) XSS Testing
Input validation testing could uncover XSS
vulnerabilities in Web applications. Specification-
based IVT methods generate test cases with the
aim of exercising various combinations of
valid/invalid input conditions stated, to avoid the
sole dependency on specifications, Nuo Li and
colleagues attempted to infer valid input
conditions by analyzing input fields and their
surrounding texts in client-side scripts. Code-based
IVT methods apply static analysis to extract
valid/invalid input conditions from server-side
scripts. In general, the effectiveness of both
specifications, the code-based approaches relies
largely on the completeness of specifications or
the adequacy of generated test suites for
discovering XSS vulnerabilities in source code.
Only test cases containing adequate XSS attack
vectors can induce original and mutated programs
to behave differently. Hossain Shahriar and
Mohammad Zulkernine developed MUTEC, a
fault-based XSS testing tool that creates mutated

www.ijirtm.com 53

http://www.ijirtm.com/

ISSN: 2581-3404 (Online)
International Journal of Innovative Research in Technology and Management, Vol-4, Issue-6, 2020.

programs by changing sensitive program
statements, or sinks, with mutation operators.
Cross site scripting (XSS) vulnerability is caused
by the failure of web application in sanitizing user
inputs embedded in HTML output pages. Through
such inputs, there is a possibility that an attacker
injects malicious scripts in the applications.
Furthermore, the attacker’s purpose may be served
when a client subsequently visits an exploited web
page causing the injected scripts to be executed by
the client’s browser. Thus, XSS attack is a type of
code injection attack. In addition, injected scripts
are written in any type of client-side scripts such
as JavaScript, Action Script and VBScript. XSS
has been ranked amongst the top two common and
serious security laws. In the past, even giant web
sites such as HSBC, Google Search Engine,
Facebook, MySpace and Vodafone have been
reported to contain this type of vulnerability.
Code-based extraction of XSS defense artifacts in
this concept, it presents the concepts on extracting
the program artifacts, which serves the purpose for
securing the program from input manipulation
attacks. These concepts are built on modeling the
possible code patterns of defensive coding
methods. Through the empirical studies on many
web applications, they observed that the following
methods are generally implemented to prevent
XSS: (a) input validation; (b) escaping; (c)
filtering. These methods are also addressed as
sanitization methods in the literature.

a) Input validation
It is a traditional approach for handling external
data in web applications. This method could reject
invalid input immediately. Originally, it is used to
ensure input data correctness but in today’s web
applications, data accuracy could also ensure data
security; therefore nodes in a CFG which
implement this defense method should be
extracted and checked for adequacy in defending
against XSS. Let G be a CFG of a given web
program. Let k be a pv-out node in G and vk be a
tainted variable referenced at k. There may be
more than one tainted variable referenced at k. It is
common that the program uses predicate nodes or
exception nodes to allow vk to be operated at k

only if the value of vk satisfies the user interface
specification or some required conditions. It
provides a definition that characterizes such node
pattern.

b) Characterizing XSS Defense through
Escaping
Although input validation may be used as a
primary defense against all kinds of input
manipulation attacks, validation methods may not
defend against all XSS attacks. Therefore for
absolute prevention of code injection attacks such
as XSS, escaping (also called encoding) is often
used to complement input validation. Escaping is a
technique that ensures any special characters
significant to a certain interpreter are just treated
as data not as code. To prevent XSS, proper
escaping methods, such as HTML entity escaping,
URL escaping, and JavaScript escaping, need to be
used according to the context in which the tainted
data are referenced (i.e. according to the type of
client-side interpreter interpreting the tainted data)
. Hence, this method will not work if the escaping
scheme is inappropriate. For example, a developer
may use SQL escaping scheme (i.e. special
characters significant to SQL parser are escaped)
on the tainted data assuming that the data are only
to be referenced in SQL statements. However, if
the data are also used in HTML outputs, the
adopted SQL escaping scheme will not escape the
special characters significant to the HTML
interpreters, thus causing XSS vulnerability.
Therefore nodes implementing such defense
method need to be extracted and examined for
adequacy.

c) Characterizing XSS Defense through
Filtering
Although escaping could completely prevent XSS,
it is required that the correct escaping method is
applied depending on the context in which the
tainted data are referenced. As the use of a
standard escaping library is also required, some
web applications may not prefer this method.
Instead they may apply filtering method to prevent
XSS. Filtering is a technique that either removes
or replaces malicious characters with non-

www.ijirtm.com 54

http://www.ijirtm.com/

ISSN: 2581-3404 (Online)
International Journal of Innovative Research in Technology and Management, Vol-4, Issue-6, 2020.

malicious ones. Among the discussed three
defense methods the filtering method is equally
important in many web applications as the flow of
tainted data through the filtering methods and into
the HTML outputs can be very seamless. Such
filtering techniques had implemented in a web
application is generally carried out by nodes in G
that influence the tainted variables of pv-out node.
3) Vulnerability Detection
Cross-site scripting (XSS) vulnerabilities can be
classified into two types:
• Non-persistent (or reflected) cross-site
scripting is a most commonly exploited XSS
vulnerability. In this type of attack the malicious
data is reflected immediately on the page by the
server without proper sanitization.
• Persistent (or stored) cross-site scripting
vulnerability occur when the attacker injects the
malicious code as user input into the server and the
code is saved permanently by the server.
Thereafter, it is displayed every time as a page of
result to the users visiting the webpage in the
course of regular browsing. For this reason stored
XSS is much more devastating than the reflected
XSS. By exploiting the stored XSS vulnerability,
attacker may replicate large amount of malicious
data to the users (For example the Samy XSS
worm that affected Myspace a few years ago).

2. Literature Survey
Researchers have proposed multiple solutions to
cross-site scripting, but vulnerabilities continue to
exist in many Web application’s due to
developers’ lack of understanding of the problem
and their unfamiliarity with current defenses,
strengths and limitations. Existing techniques for
defending against XSS exploits suffer from
various weaknesses: inherent limitations,
incomplete implementations, complex
frameworks, runtime overhead, and intensive
manual-work requirements. Security researchers
can address these weaknesses from two different
perspectives. From a development perspective,
researchers need to craft simpler, better, and more
flexible security defenses. They need to look
beyond current techniques by incorporating more
effective input validation and sanitization features.

In time, development tools will incorporate
security frameworks such as ESAPI that
implement state-of-the-art technology [1].

Author Kieyzun et al. advised an automatic
technique for creating inputs that expose SQLI and
XSS vulnerabilities. The technique generates
sample inputs, symbolically tracks tainted data
through execution (including through database
accesses), and mutates the inputs to produce
concrete exploits. This technique creates real
attack vectors, has few false positives, incurs no
runtime overhead for the deployed application,
works without requiring modification of
application code, and handles dynamic
programming-language constructs. The author also
implemented the technique for PHP, in a tool
Ardilla. This approach was implemented in a tool
called BLUEPRINT that was integrated with
several popular web applications. The authors
evaluated BLUEPRINT against a barrage of stress
tests that demonstrate strong resistance to attacks,
excellent compatibility with web browsers and
reasonable performance overheads [2].

Scott & Sharp investigated new tools and
techniques which address the problem of
application-level Web security. They 1) described
a scalable structuring mechanism facilitating the
abstraction of security policies from large Web-
applications developed in heterogeneous
multiplatform environments; 2) presented a set of
tools which assist programmers in developing
secure applications which are resilient to a wide
range of common attacks. 3) Proposed signature
based misuse detection approach. It expresses a
security layer on top of the web application, so that
the existing web application remain unchanged
whenever a new threat is introduced that demands
new security mechanisms. They claim that this
approach is very effective as it addresses the
vulnerabilities at a granular level of tags and
attributes, in addition to addressing the XSS
vulnerabilities [3].

In this paper, on the basis of the possible
implementation patterns of defensive coding

www.ijirtm.com 55

http://www.ijirtm.com/

ISSN: 2581-3404 (Online)
International Journal of Innovative Research in Technology and Management, Vol-4, Issue-6, 2020.

methods author extracts all such defenses
implemented for securing each potentially
vulnerable HTML output. Author also introduces a
variant of control flow graph, called tainted
information flow graph, as a model to audit the
adequacy of XSS defense artifacts. The author
evaluated the proposed method based on the
experiments on seven Java-based web
applications. In the auditing experiments, there
approach was effective in recovering all the XSS
defense features implemented in the test subjects.
The extracted artifacts were also shown to be
useful for filtering the false-positive cases reported
by a vulnerability detection method and helpful in
fixing the vulnerable code sections.

Cross site scripting (XSS) vulnerability is mainly
caused by the failure of web applications in
sanitizing user inputs embedded in web pages.
Even though state-of-the-art defensive coding
methods and vulnerability detection methods are
often used by developers and security auditors,
XSS flaws still remain in many applications
because of (i) the difficulty of adopting these
methods, (ii) the inadequate implementation of
these methods, and/or (iii) the lack of
understanding of XSS problem. To address this
issue, this study proposes a code-auditing
approach that recovers the defense model
implemented in program source code and suggests
guidelines for checking the adequacy of recovered
model against XSS attacks [4].

In this paper, they have analyzed all the techniques
those have been used to detect XSS and arrange a
number of analyses to evaluate performances of
those methodologies. Cross-Site Scripting is one
of the main problems of any Web- based service.
Since Web browsers support the execution of
commands embedded in Web pages to enable
dynamic Web pages, attackers can make use of
this feature to enforce the execution of malicious
code in a user’s Web browser. To augment the
user’s experience many web applications are using
client side scripting languages such as JavaScript
but the growing of JavaScript is increasing serious

security vulnerabilities in web application too,
such as cross-site scripting (XSS) [5].

In this paper, author proposes a passive detection
system to identify successful XSS attacks. Based
on a prototypical implementation, they examine
accuracy of approach and verify its detection
capabilities. They compiled a data-set of HTTP
request/response from 20 popular web applications
for this, in combination with both real word and
manually crafted XSS exploits; detection approach
results in a total of zero false negatives for all
tests, while maintaining an excellent false positive
rate for more than 80 percent of the examined web
applications. In this world of networking where
people around the globe are connected, Cross-site
Scripting (XSS) has emerged to one of the most
prevalent growing threat. XSS attacks are those in
which attackers inject malicious codes, most often
client-side scripts, into web applications from
outside sources. Because of the number of possible
injection location and techniques, many
applications are vulnerable to this attack method.
Even though the main reason for the vulnerability
primarily lies on the server side, the actual
exploitation is within the victim’s web browser on
the client side [6].

This paper provides client-side solution to mitigate
cross-site scripting Attacks. The existing client-
side solutions degrade the performance of client's
system resulting in a poor web surfing experience.
In this project provides a client side solution that
uses a step by step approach to protect cross site
scripting, without degrading much the user's web
browsing experience. Cross Site Scripting (XSS)
Attacks are currently the most popular security
problems in modern web applications. These
Attacks make use of vulnerabilities in the code of
web-applications, resulting in serious
consequences, such as theft of cookies, passwords
and other personal credentials. Cross-Site scripting
(XSS) Attacks occur when accessing information
in intermediate trusted sites. Client side solution
acts as a web proxy to mitigate Cross Site
Scripting Attacks which manually generates rules
to mitigate Cross Site Scripting attempts. Client

www.ijirtm.com 56

http://www.ijirtm.com/

ISSN: 2581-3404 (Online)
International Journal of Innovative Research in Technology and Management, Vol-4, Issue-6, 2020.

side solution effectively protects against
information leakage from the user's environment.
Cross Site Scripting (XSS) Attacks are easy to
execute, but difficult to detect and prevent [7].
In this paper, initially they have tried out the
experiments on the exploitation of XSS
vulnerabilities using local host server (i.e.
XAMPP). After this, they have investigated for the
XSS vulnerabilities on social networking sites
(like Facebook, Orkut, Blogs, Twitter etc.) and
tried to exploit the same on blogs. Finally, on the
basis of some analysis and results, they have
discussed a novel technique of mitigating this XSS
vulnerability by introducing a Sandbox
environment on the web browser. Attacks on web
applications are growing rapidly with the opening
of new technologies, HTML tags and JavaScript
functions. Cross-Site Scripting (XSS)
vulnerabilities are being exploited by the attackers
to steal web browser’s resources (cookies,
credentials etc.) by injecting the malicious
JavaScript code on the victim’s web applications.
The existing techniques like filtering of tags and
special characters, maintaining a list of vulnerable
sites etc. cannot eliminate the XSS vulnerabilities
completely [8].

In this paper, a novel technique called Dynamic
Hash Generation Technique is introduced whose
aim is to make cookies worthless for the attackers.
This technique is implemented on the server side
and its main task is to generate a hash value of
name attribute in the cookie and send this hash
value to the web browser. With this technique, the
hash value of name attribute in the cookie which is
stored on the browser’s database is not valid for
the attackers to exploit the vulnerabilities of XSS
attacks. Cookies are a means to provide state full
communication over the HTTP. In the World Wide
Web (WWW), once the user using web browser
has been successfully authenticated by the web
server of the web application, then the web server
will generate and transfer the cookie to the web
browser. Now each time, if the user wants to send
a request to the web server as a part of the active
connection, the user has to include the
corresponding cookie in its request, so that the

web server associates the cookie to the
corresponding user. Cookies are the mechanisms
that maintain an authentication state between the
user and web application. Therefore cookies are
the possible targets for the attackers. Cross Site
Scripting (XSS) attack is one of such attacks
against the web applications in which a user has to
compromise its browser’s resources [9].

The attack specially focuses on Cross Site
Scripting attacks. The author further discusses
types and several counter measures. The major
problem faced by the web application is the
parameter manipulation, through which the
attackers are aiming to access the database.
Generally web applications maintain same
structure and value. In that, required information is
being accessed by the identical variables and
keywords through web parameters. Parameter
manipulation is the major issue in the web
application used by the attacker to manipulate the
parameter being sent by the browser and executed
by the server. These vulnerabilities occur after the
string gets returned to the user's web browser by a
susceptible web application. Therefore, to prevent
XSS vulnerabilities, it is obligatory to prepare
preventative measures to protect the parsing
processing in the web browser so that there is no
influence even from the effect of the string
prepared by the attacker [10].

An XSS vulnerability are found in those Web
applications that accepts data from users and
dynamically include it in servers then on web-
pages without properly validating the data. In this
process, if an attacker found XSS vulnerability
then it allows him to execute arbitrary commands
and display content in a victim’s browser. In a
successful XSS attack, an attacker controls the
victim’s browser or account on the vulnerable
Web application. The reliability of an XSS
vulnerability lies in the fact that the malicious code
executes in the context of the victim's session,
allowing the attacker to bypass normal security
restrictions. A classic example of this is with
online message boards where users are allowed to
post HTML formatted messages for other users to

www.ijirtm.com 57

http://www.ijirtm.com/

ISSN: 2581-3404 (Online)
International Journal of Innovative Research in Technology and Management, Vol-4, Issue-6, 2020.

read‖ Complete Cross-site Scripting Walkthrough
[11].

In December 2006, Stefano Di Paola and Giorgio
Fedon described a universal XSS attack against the
Acrobat PDF plugin. When the client clicks the
link and the data is processed by the page
(typically by a client side HTML-embedded script
such as JavaScript), the malicious JavaScript
payload gets embedded into the page at runtime.
[12].

3. Problem Statement
An attacker can lure the client to render the page
containing the URL (the location and/or the
referrer) partly controlled by the attacker. When
the client clicks the link and the data is processed
by the page (typically by a client side HTML-
embedded script such as JavaScript), the malicious
JavaScript payload gets embedded into the page at
runtime. Input validation using HTTP POST
submission method and HTTP GET submission
method are vulnerable to XSS attacks as it allows
the user to manipulate the website controls using
code implementation. Although the HTTP GET
can be exploited more easily by an attacker
because all it needs is to change the URL. The
exploitation may change according to submission
methods used by different web-browsers.

4. Conclusions and Future Work
Patching XSS vulnerability is arduous as we can
never be 100% sure that no-one can penetrate the
filter. But attackers always find ways to breach
websites filter and exploit the vulnerability. For
this purpose, it is necessary to get updated with the
latest XSS vectors. Therefore, considering the
emergence of web technologies, a new proposal is
introduced which will perhaps enhance the
security of websites by thoroughly analyzing the
input and URL validation process. To prevent the
XSS attacks in existing websites, a two way
detectors and filter can be developed. The detector
will identify any suspicious URL submitted or
stored in the database of website and report to
filter. Filter will sanitize that particular data to
passive text before storing in the database of

website. Filter can also be programmed to sanitize
previously store data. This approach can
effectively prevent XSS attacks on websites.

References
[1] Lwin Khin Shar and Hee Beng Kuan Tan,
"Defending against Cross-Site Scripting Attacks",
IEEE Computer, Vol. 45(3), pp 55-62, March-
2012.

[2] A.Kieyzun, P.J. Guo,K. Jayaraman, and
M.D. Ernst, "Automatic Creation of SQL Injection
And Cross-Site Scripting Attacks", ICSE '09
Proceedings of the 31st International Conference
on Software Engineering, pp. 199-209, May 2009.

[3] D. Scott and R. Sharp, "Specifying and
enforcing application-level Web security policies",
IEEE Transactions on Knowledge and Data
Engineering, vol. 15, no.4, pp. 771-783, July-Aug
2003.

[4] L.K. Shar and H.B.K. Tan, "Auditing the
XSS defence features implemented in web
application programs", Software, IET, Vol. 6, Iss.
4, pp. 377–390, 2012.

[5] Tejinder Singh, "Detecting and Prevention
Cross–Site Scripting Techniques", IOSR Journal
of Engineering, Vol. 2(4) pp. 854-857, April-2012.

[6] M. James Stephen, P.V.G.D. Prasad
Reddy, Ch. Demudu Naidu and Ch. Rajesh,
"Prevention of Cross Site Scripting with E-Guard
Algorithm", International Journal of Computer
Applications, Vol. 22(5), May-2011.

[7] S. Shalini and S. Usha, "Prevention Of
Cross-Site Scripting Attacks (XSS) On Web
Applications In The Client Side", IJCSI
International Journal of Computer Science Issues,
Vol. 8(4), July-2011

[8] Shashank Gupta and Lalitsen Sharma,
"Exploitation of Cross-Site Scripting (XSS)
Vulnerability on Real World Web Applications
and its Defense", International Journal of

www.ijirtm.com 58

http://www.ijirtm.com/

ISSN: 2581-3404 (Online)
International Journal of Innovative Research in Technology and Management, Vol-4, Issue-6, 2020.

Computer Applications, Vol. 60 (14), December-
2012.

[9] Shashank Gupta, Lalitsen Sharma, Manu
Gupta and Simi Gupta, "Prevention of Cross-Site
Scripting Vulnerabilities using Dynamic Hash
Generation Technique on the Server Side",
International Journal of Advanced Computer
Research, Vol. 2(3), September-2012.

[10] Vishwajit S. Patil, Dr. G. R. Bamnote and
Sanil S. Nair, "Cross Site Scripting: An
Overview", International Symposium on Devices
MEMS, Intelligent Systems & Communication,
Proceedings published by International Journal of
Computer Applications (IJCA), 2011.

[11] Ahmed Elhady and Mohamed, "Complete
Cross-site Scripting Walkthrough", 23rd CCC
Conference, December 2006.

[12] Subverting Ajax Stefano Di Paola, Giorgio
Fedonhttp://events.ccc.de/congress/2006/Fahrplan/
attachments/1158- Subverting_Ajax.pdf.

www.ijirtm.com 59

http://www.ijirtm.com/

